Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38560918

RESUMO

Adult animals are unable to regenerate heart cells due to postnatal cardiomyocyte cycle arrest, leading to higher mortality rates in cardiomyopathy. However, reprogramming of energy metabolism in cardiomyocytes provides a new perspective on the contribution of glycolysis to repair, regeneration, and fibrosis after cardiac injury. Pyruvate kinase (PK) is a key enzyme in the glycolysis process. This review focuses on the glycolysis function of PKM2, although PKM1 and PKM2 both play significant roles in the process after cardiac injury. PKM2 exists in both a low-activity dimer and a high-activity tetramer form. PKM2 dimers promote aerobic glycolysis but have low catalytic activity, leading to the accumulation of glycolytic intermediates. These intermediates enter the PPP pathway to promote cardiomyocyte proliferation and heart regeneration. Additionally, they activate KATP channels, protecting the heart against ischemic damage. PKM2 tetramers function similarly to PKM1 in glycolysis, promoting pyruvate oxidation and subsequently ATP generation to protect the heart from ischemic damage. They also activate KDM5 through the accumulation of αKG, thereby promoting cardiomyocyte proliferation and cardiac regeneration. Apart from glycolysis, PKM2 interacts with transcription factors like Jmjd4, RAC1, ß-catenin, and HIF-1α, playing various roles in homeostasis maintenance, remodeling, survival regulation, and neovascularization promotion. However, PKM2 has also been implicated in promoting cardiac fibrosis through mechanisms like SIRT3 deletion, TG2 expression enhancement, and activation of TGF-ß1/Smad2/3 and Jak2/Stat3 signals. Overall, PKM2 shows promising potential as a therapeutic target for promoting cardiomyocyte proliferation and cardiac regeneration, as well as addressing cardiac fibrosis after injury.

2.
Front Bioeng Biotechnol ; 12: 1370685, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572355

RESUMO

The production of N-linked glycoproteins in genetically engineered Escherichia coli holds significant potential for reducing costs, streamlining bioprocesses, and enhancing customization. However, the construction of a stable and low-cost microbial cell factory for the efficient production of humanized N-glycosylated recombinant proteins remains a formidable challenge. In this study, we developed a glyco-engineered E. coli chassis to produce N-glycosylated proteins with the human-like glycan Gal-ß-1,4-GlcNAc-ß-1,3-Gal-ß-1,3-GlcNAc-, containing the human glycoform Gal-ß-1,4-GlcNAc-ß-1,3-. Our initial efforts were to replace various loci in the genome of the E. coli XL1-Blue strain with oligosaccharyltransferase PglB and the glycosyltransferases LsgCDEF to construct the E. coli chassis. In addition, we systematically optimized the promoter regions in the genome to regulate transcription levels. Subsequently, utilizing a plasmid carrying the target protein, we have successfully obtained N-glycosylated proteins with 100% tetrasaccharide modification at a yield of approximately 320 mg/L. Furthermore, we constructed the metabolic pathway for sialylation using a plasmid containing a dual-expression cassette of the target protein and CMP-sialic acid synthesis in the tetrasaccharide chassis cell, resulting in a 40% efficiency of terminal α-2,3- sialylation and a production of 65 mg/L of homogeneously sialylated glycoproteins in flasks. Our findings pave the way for further exploration of producing different linkages (α-2,3/α-2,6/α-2,8) of sialylated human-like N-glycoproteins in the periplasm of the plug-and-play E. coli chassis, laying a strong foundation for industrial-scale production.

3.
Heliyon ; 10(7): e28565, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601664

RESUMO

Objective: This article aims to identify genetic features associated with immune cell infiltration in cerebral ischemia-reperfusion injury (CIRI) development through bioinformatics, with the goal of discovering diagnostic biomarkers and potential therapeutic targets. Methods: We obtained two datasets from the Gene Expression Omnibus (GEO) database to identify immune-related differentially expressed genes (IRDEGs). These genes' functions were analyzed via Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Tools such as CIBERSORT and ssGSEA assessed immune cell infiltration. The Starbase and miRDB databases predicted miRNAs interacting with hub genes, and Cytoscape software mapped mRNA-miRNA interaction networks. The ENCORI database was employed to predict RNA binding proteins interacting with hub genes. Key genes were identified using a random forest algorithm and constructing a Support Vector Machine (SVM) model. LASSO regression analysis constructed a diagnostic model for hub genes to determine their diagnostic value, and PCR analysis validated their expression in cerebral ischemia-reperfusion. Results: We identified 10 IRDEGs (C1qa, Ccl4, Cd74, Cd8a, Cxcl10, Gmfg, Grp, Lgals3bp, Timp1, Vim). The random forest algorithm, and SVM model intersection revealed three key genes (Ccl4, Gmfg, C1qa) as diagnostic biomarkers for CIRI. LASSO regression analysis, further refined this to two key genes (Ccl4 and C1qa), With ROC curve, analysis confirming their diagnostic efficacy (C1qa AUC = 0.75, Ccl4 AUC = 0.939). PCR analysis corroborated these findings. Conclusions: Our study elucidates immune and metabolic response mechanisms in CIRI, identifying two immune-related genes as key biomarkers and potential therapeutic targets in response to cerebral ischemia-reperfusion injury.

4.
Heliyon ; 10(6): e27687, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38515720

RESUMO

It is well established that increased peripheral helper T cells (TPH) and follicular helper T cells (TFH) was found in systemic lupus erythematosus (SLE) patients. However, the expression patterns and immunomodulatory roles of TIGIT and PD1 on TPH/TFH in SLE are poorly understood. The expression patterns of TIGIT and PD1 on TPH and TFH cells were examined using flow cytometry and their expression patterns in SLE patients were then further evaluated for their correlation with auto-antibodies, disease activity and severity, B cell differentiation. Logistic regression was used to analyze the risk factors. And the receiver operating characteristic curves and logistic regression model were created to evaluate the predicting role in SLE. TIGIT±PD1+TPH, TIGIT±PD1+TFH cells in the peripheral blood of SLE patients were upregulated, whereas TIGIT+PD1-TFH was downregulated. TIGIT ± PD1+TPH, TIGIT ± PD1+TFH cells positively correlated with auto-antibodies production, disease activity and severity, whereas TIGIT+PD1-TFH cells negatively correlated. TIGIT ± PD1+TPH, TIGIT-PD1+TFH were positively correlated with the frequency of plasmablasts. Furthermore, higher TIGIT+PD1+TPH and TIGIT+PD1+TFH were shown to be risk factors for SLE, whereas TIGIT+PD1-TFH was found to be a protective factor, according to logistic regression analysis. A further logistic regression model showed that combination of TPH/TFH and routine blood indicators may has potential predicting value for SLE, with AUC of 0.957. The increased TIGIT ± PD1+TPH, increased TIGIT ± PD1+TFH, decreased TIGIT+PD1-TFH correlates with disease severity and activity, may boost our comprehending of the role of TIGIT and PD1 on TPH/TFH in SLE, and a logistic regression model based on combination of TPH/TFH and routine blood indicators shows prominent value for predicting SLE.

5.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542304

RESUMO

Male sterility is a valuable trait for hybrid seed production in tomato (Solanum lycopersicum). The mutants male sterile-30 (ms-30) and ms-33 of tomato exhibit twisted stamens, exposed stigmas, and complete male sterility, thus holding potential for application in hybrid seed production. In this study, the ms-30 and ms-33 loci were fine-mapped to 53.3 kb and 111.2 kb intervals, respectively. Tomato PISTILLATA (TPI, syn. SlGLO2), a B-class MADS-box transcription factor gene, was identified as the most likely candidate gene for both loci. TPI is also the candidate gene of tomato male sterile mutant 7B-1 and sl-2. Allelism tests revealed that ms-30, ms-33, 7B-1, and sl-2 were allelic. Sequencing analysis showed sequence alterations in the TPI gene in all these mutants, with ms-30 exhibiting a transversion (G to T) that resulted in a missense mutation (S to I); ms-33 showing a transition (A to T) that led to alternative splicing, resulting in a loss of 46 amino acids in protein; and 7B-1 and sl-2 mutants showing the insertion of an approximately 4.8 kb retrotransposon. On the basis of these sequence alterations, a Kompetitive Allele Specific PCR marker, a sequencing marker, and an Insertion/Deletion marker were developed. Phenotypic analysis of the TPI gene-edited mutants and allelism tests indicated that the gene TPI is responsible for ms-30 and its alleles. Transcriptome analysis of ms-30 and quantitative RT-PCR revealed some differentially expressed genes associated with stamen and carpel development. These findings will aid in the marker-assisted selection for ms-30 and its alleles in tomato breeding and support the functional analysis of the TPI gene.


Assuntos
Infertilidade Masculina , Solanum lycopersicum , Humanos , Masculino , Solanum lycopersicum/genética , Alelos , Melhoramento Vegetal , Perfilação da Expressão Gênica , Infertilidade Masculina/genética , Estudos de Associação Genética
6.
Theor Appl Genet ; 137(4): 87, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512468

RESUMO

KEY MESSAGE: A total of 38 putative additive QTLs and 55 pairwise putative epistatic QTLs for tiller-related traits were reported, and the candidate genes underlying qMtn-KJ-5D, a novel major and stable QTL for maximum tiller number, were characterized. Tiller-related traits play an important role in determining the yield potential of wheat. Therefore, it is important to elucidate the genetic basis for tiller number when attempting to use genetic improvement as a tool for enhancing wheat yields. In this study, a quantitative trait locus (QTL) analysis of three tiller-related traits was performed on the recombinant inbred lines (RILs) of a mapping population, referred to as KJ-RILs, that was derived from a cross between the Kenong 9204 (KN9204) and Jing 411 (J411) lines. A total of 38 putative additive QTLs and 55 pairwise putative epistatic QTLs for spike number per plant (SNPP), maximum tiller number (MTN), and ear-bearing tiller rate (EBTR) were detected in eight different environments. Among these QTLs with additive effects, three major and stable QTLs were first documented herein. Almost all but two pairwise epistatic QTLs showed minor interaction effects accounting for no more than 3.0% of the phenotypic variance. The genetic effects of two colocated major and stable QTLs, i.e., qSnpp-KJ-5D.1 and qMtn-KJ-5D, for yield-related traits were characterized. The breeding selection effect of the beneficial allele for the two QTLs was characterized, and its genetic effects on yield-related traits were evaluated. The candidate genes underlying qMtn-KJ-5D were predicted based on multi-omics data, and TraesKN5D01HG00080 was identified as a likely candidate gene. Overall, our results will help elucidate the genetic architecture of tiller-related traits and can be used to develop novel wheat varieties with high yields.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Mapeamento Cromossômico/métodos , Ligação Genética , Melhoramento Vegetal , Fenótipo
7.
Lupus ; 33(5): 490-501, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457835

RESUMO

Background: Systemic lupus erythematosus (SLE) is chronic autoimmune disease with multiple organ damage and is associated with poor prognosis and high mortality. Identification of universal biomarkers to predict SLE activity is challenging due to the heterogeneity of the disease. This study aimed to identify the indicators that are sensitive and specific to predict activity of SLE.Methods: We retrospectively analyzed 108 patients with SLE. Patients were categorized into SLE with activity and without activity groups on the basis of SLE disease activity index. We analyzed the potential of routine and novel indicators in predicting the SLE activity using receiver operating characteristic curves and multivariate logistic regression. The Spearman method was used to understand the correlation between albumin to fibrinogen ratio (AFR), prognostic nutritional index (PNI), AFR-PNI model and disease activity.Results: SLE with activity group had higher ESR, CRP, D-dimer, fibrinogen, CRP to albumin ratio, positive rate of anti-dsDNA and ANUA, and lower C3, total bilirubin, total protein, albumin, albumin/globulin, creatinine, high density liptein cholesterol, hemoglobin, hematocrit, lymphocyte count, positive rate of anti-SSA, AFR, PNI than SLE without activity. A further established model based on combination of AFR and PNI (AFR-PNI model) showed prominent value in distinguishing SLE with activity patients from SLE without activity patients. In addition, the sensitivity and specificity of AFR-PNI model + anti-dsDNA combination model were superior to AFR-PNI model. AFR and PNI were risk factors for SLE activity. Moreover, AFR+PNI model correlated with disease activity and AFR-PNI model was associated with fever, pleurisy, pericarditis, renal involvement.Conclusion: These findings suggest that predictive model based on combination of AFR and PNI may be useful markers to identify active SLE in clinical practice.


Assuntos
Lúpus Eritematoso Sistêmico , Avaliação Nutricional , Humanos , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/complicações , Fibrinogênio , Prognóstico , Estudos Retrospectivos , Biomarcadores , Albuminas
8.
Theor Appl Genet ; 137(3): 67, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441674

RESUMO

KEY MESSAGE: A major stable QTL, qKl-1BL, for kernel length of wheat was narrowed down to a 2.04-Mb interval on chromosome 1BL; the candidate genes were predicated and the genetic effects on yield-related traits were characterized. As a key factor influencing kernel weight, wheat kernel shape is closely related to yield formation, and in turn affects both wheat processing quality and market value. Fine mapping of the major quantitative trait loci (QTL) for kernel shape could provide genetic resources and a theoretical basis for the genetic improvement of wheat yield-related traits. In this study, a major QTL for kernel length (KL) on 1BL, named qKl-1BL, was identified from the recombinant inbred lines (RIL) in multiple environments based on the genetic map and physical map, with 4.76-21.15% of the phenotypic variation explained. To fine map qKl-1BL, the map-based cloning strategy was used. By using developed InDel markers, the near-isogenic line (NIL) pairs and eight key recombinants were identified from a segregating population containing 3621 individuals derived from residual heterozygous lines (RHLs) self-crossing. In combination with phenotype identification, qKl-1BL was finely positioned into a 2.04-Mb interval, KN1B:698.15-700.19 Mb, with eight differentially expressed genes enriched at the key period of kernel elongation. Based on transcriptome analysis and functional annotation information, two candidate genes for qKl-1BL controlling kernel elongation were identified. Additionally, genetic effect analysis showed that the superior allele of qKl-1BL from Jing411 could increase KL, thousand kernel weight (TKW), and yield per plant (YPP) significantly, as well as kernel bulk density and stability time. Taken together, this study identified a QTL interval for controlling kernel length with two possible candidate genes, which provides an important basis for qKl-1BL cloning, functional analysis, and application in molecular breeding programs.


Assuntos
Locos de Características Quantitativas , Triticum , Humanos , Triticum/genética , Mapeamento Cromossômico , Alelos , Embaralhamento de DNA
9.
J Contam Hydrol ; 261: 104306, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244424

RESUMO

Despite the serious health threats due to wide use of organophosphorus pesticides (OPPs) have been experimentally claimed to be remediated by probiotic microorganisms in various food and organism models, the interactions between OPPs and probiotics in the natural wetland ecosystem was rarely investigated. This study delves into the spatial and temporal distribution, contamination levels of OPPs in the Baiyangdian region, the diversity of probiotic communities in varying environmental contexts, and the potential connection with OPPs on these probiotics. In typical shallow lake wetland ecosystem-Baiyangdian lake in north China, eight OPPs were identified in the lake sediments, even though their detection rates were generally low. Malathion exhibited the highest average content among these pesticides (9.51 ng/g), followed by fenitrothion (6.70 ng/g). Conversely, chlorpyrifos had the lowest detection rate at only 2.14%. The region near Nanliu Zhuang (F10), significantly influenced by human activities, displayed the highest concentration of total OPPs (136.82 ng/g). A total of 145 probiotic species spanning 78 genera were identified in Baiyangdian sediments. Our analysis underscores the relations of environmental factors such as phosphatase activity, pH, and electrical conductivity (EC) with probiotic community. Notably, several high-abundance probiotics including Pseudomonas chlororaphis, Clostridium sp., Lactobacillus fermentum, and Pseudomonas putida, etc., which were reported to exhibit significant potential for the degradation of OPPs, showed strongly correlations with OPPs in the Baiyangdian lake sediments. The outcomes of this research offer valuable insights into the spatiotemporal dynamics of OPPs in natural large lake wetland and the probability of their in-situ residue bioremediation through the phosphatase pathway mediated by probiotic such as Lactic acid bacteria in soils/sediments contaminated with OPPs.


Assuntos
Praguicidas , Humanos , Praguicidas/análise , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Ecossistema , Lagos , Monoéster Fosfórico Hidrolases/metabolismo , China , Sedimentos Geológicos , Monitoramento Ambiental
10.
Arthritis Res Ther ; 26(1): 7, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167491

RESUMO

BACKGROUND: NAT10 is the firstly recognized RNA acetyltransferase that participates in multiple cellular biological processes and human disease. However, the role of N-acetyltransferase 10 (NAT10) in ankylosing spondylitis (AS) is still poorly elaborated. METHODS: Fifty-six patients with New-Onset AS, 52 healthy controls (HC), 20 patients with rheumatoid arthritis (RA) and 16 patients with systemic lupus erythematosus (SLE) were recruited from The First Afliated Hospital of Nanchang University, and their clinical characteristics were recorded. The expression level of NAT10 in peripheral blood mononuclear cell (PBMC) was examined using reverse transcription-quantitative PCR analysis. The correlations between the expression level of NAT10 in the New-Onset AS patients and disease activity of AS were examined, and receiver operating characteristic (ROC) curves were built to evaluate predictive value in AS. Univariate analysis and multivariate regression analysis were used to analyze the risk factors and construct predictive model. RESULTS: The mRNA expressions of NAT10 in PBMC from new-onset AS patients were significantly low and there were negative correlation between mRNA NAT10 and ASDAS-CRP, BASDIA in new-onset AS patients. ROC analysis suggested that mRNA NAT10 has value in distinguishing new-onset AS patients from HC, RA and SLE. Furthermore, a novel predictive model based on mRNA NAT10 and neutrophil percentages (N%) was constructed for distinguishing new-onset AS patients from HC (AUC = 0.880, sensitivity = 84.62%, specificity = 76.92%) and the predictive model correlated with the activity of new-onset AS. Furthermore, the predictive model could distinguish new-onset AS patients from RA and SLE (AUC = 0.661, sensitivity = 90.38%, specificity = 47.22%). Moreover, the potential predictive value of the combination of predictive model-HLA-B27 for AS vs. HC with a sensitivity of 92.86% (39/42), a specificity of 100.00% (52/52) and an accuracy of 96.81% (91/94) was superior to that of HLA-B27, which in turn had a sensitivity of 84.44% (38/45), a specificity of 100.00% (52/52) and an accuracy of 92.78% (90/97). CONCLUSION: The present study suggested that the decreased mRNA NAT10 may play a role in AS pathogenesis and predictive model based on mRNA NAT10 and N% act as bioindicator for forecast and progression of diseases.


Assuntos
Artrite Reumatoide , Lúpus Eritematoso Sistêmico , Espondilite Anquilosante , Humanos , Espondilite Anquilosante/diagnóstico , Espondilite Anquilosante/genética , Leucócitos Mononucleares/metabolismo , Antígeno HLA-B27 , Relevância Clínica , Artrite Reumatoide/metabolismo , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , RNA Mensageiro/metabolismo , Acetiltransferases/metabolismo , Acetiltransferases N-Terminal/metabolismo
11.
Adv Mater ; 36(2): e2306860, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37703533

RESUMO

Halide perovskites are crystalline semiconductors with exceptional optoelectronic properties, rapidly developing toward large-scale applications. Lead (II) (Pb2+ ) is the core element used to prepare halide perovskites. Pb2+ can displace key 2+ elements, including calcium, zinc and iron, that regulate vital physiological functions. Sn2+ can replace Pb2+ within the perovskite structure and, if accidentally dispersed in the environment, it readily oxidizes to Sn4+ , which is compatible with physiological functions and thus potentially safe. The 3+ salt bismuth (III) (Bi3+ ) is also potentially safe for the same reason and useful to prepare double perovskites. Here, this work studies the biotoxicity of Pb, Sn, and Bi perovskites in mice for the first time. This work analyses histopathology and growth of mice directly exposed to perovskites and investigate the development of their offspring generation. This study provides the screening of organs and key physiological functions targeted by perovskite exposure to design specific studies in mammalians.


Assuntos
Compostos Inorgânicos , Chumbo , Titânio , Animais , Camundongos , Chumbo/toxicidade , Compostos de Cálcio/toxicidade , Óxidos/toxicidade , Mamíferos
12.
Sci Total Environ ; 913: 169628, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159771

RESUMO

Increasing concerns about public health and safety after covid-19 have raised pathogen studies, especially in aquatic environments. However, the extent to how different location and human activities affect geographic occurrence and distribution of pathogens in response to agricultural pollution, boat tourism disturbances and municipal wastewater inflow in a degraded lake remains unclear. Since the surrounding residents depend on the lake for their livelihood, understanding the pathogens reserved in lake sediment and the regulation possibility by environmental factors are challenges with far-reaching significance. Results showed that 187 pathogens were concurrently shared by the nine sediment samples, with Salmonella enterica and Pseudomonas aeruginosa being the most abundant. The similar composition of the pathogens suggests that lake sediment may act as reservoirs of generalist pathogens which may pose infection risk to a wide range of host species. Of the four virulence factors (VFs) types analyzed, offensive VFs were dominant (>46 % on average) in all samples, with dominant subtypes including adherence, secretion systems and toxins. Notably, the lake sediments under the impact of agricultural use (g1) showed significantly higher diversity and abundance of pathogen species and VFs than those under the impact of boat tourism (g2) and/or municipal wastewater inflow with reed marshes filtration (g3). From the co-occurrence networks, pathogens and pesticides, aggregate fractions, EC, pH, phosphatase have strong correlations. Strong positive correlations between pathogens and diazinon in g1 and ppDDT in g2 and g3 suggest higher pesticide-pathogen co-exposure risk. These findings highlight the need to explore pathogen - environmental factor interaction mechanisms in the human-impacted water environments where the control of pathogen invasion by environmental factors may accessible.


Assuntos
Praguicidas , Poluentes Químicos da Água , Humanos , Lagos/química , Poluentes Químicos da Água/análise , Águas Residuárias , Sedimentos Geológicos/química , Metagenoma , Praguicidas/análise , Fatores de Virulência , Monitoramento Ambiental , China
13.
Nat Commun ; 14(1): 8238, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086830

RESUMO

The breeding of crops with improved nitrogen use efficiency (NUE) is crucial for sustainable agriculture, but the involvement of epigenetic modifications remains unexplored. Here, we analyze the chromatin landscapes of two wheat cultivars (KN9204 and J411) that differ in NUE under varied nitrogen conditions. The expression of nitrogen metabolism genes is closely linked to variation in histone modification instead of differences in DNA sequence. Epigenetic modifications exhibit clear cultivar-specificity, which likely contributes to distinct agronomic traits. Additionally, low nitrogen (LN) induces H3K27ac and H3K27me3 to significantly enhance root growth in KN9204, while remarkably inducing NRT2 in J411. Evidence from histone deacetylase inhibitor treatment and transgenic plants with loss function of H3K27me3 methyltransferase shows that changes in epigenetic modifications could alter the strategy preference for root development or nitrogen uptake in response to LN. Here, we show the importance of epigenetic regulation in mediating cultivar-specific adaptation to LN in wheat.


Assuntos
Nitrogênio , Triticum , Triticum/metabolismo , Nitrogênio/metabolismo , Epigênese Genética , Histonas/genética , Histonas/metabolismo , Melhoramento Vegetal
14.
BMC Oral Health ; 23(1): 845, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946183

RESUMO

BACKGROUND: Several factors can influence the risk of dental caries, among which dietary factors have a significance impact on the occurrence of dental caries. The limitation of current studies is that they only focus on the influence of individual foods on the risk of dental caries. This study use cluster analysis to examine the relationship between dietary patterns and dental caries experience among adolescents aged 12-15. METHODS: Based on data from the first oral epidemic survey in Shanxi Province, a cross-sectional study was conducted among 11,351 adolescents aged 12-15 in Shanxi Province through oral examination and questionnaires. The questionnaire included the intake frequency of seven types of food. Descriptive statistics, cluster analysis, and multinomial logistic regression were used to analyze the association between dietary patterns and dental caries experience. RESULTS: The prevalence rate of caries was 44.57% and the mean DMFT score was 0.98 ± 1.49 in adolescents aged 12-15 in Shanxi Province. The caries rate was higher in females than males (X2 = 103.59, P < 0.001). Adolescents who grow up in one-child families have a lower caries risk than those who grow up in families with more than one child (OR:0.91; 95%CI:0.84-0.97). The dietary patterns of adolescents aged 12-15 can be divided into eight types, among which refreshments-rich diet (OR:1.47; 95%CI,1.22-1.77) can increase the risk of caries, while the coarse-grains-rich dietery pattern (OR:0.90; 95%CI, 0.79-0.97) has a lower caries risk. CONCLUSIONS: Social determinants of health such as sex, family size and dietary patterns influence the risk of dental caries. Certain dietary patterns could increase or decrease the risk of caries. The government, school canteens and news media should take dietary pattern factors seriously.


Assuntos
Cárie Dentária , Masculino , Feminino , Humanos , Adolescente , Criança , Estudos Transversais , Cárie Dentária/epidemiologia , Cárie Dentária/etiologia , Dieta/efeitos adversos , Inquéritos e Questionários , Prevalência , Índice CPO
15.
J Orthop Surg Res ; 18(1): 870, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37968686

RESUMO

OBJECTIVES: This study aimed to explore the value of the Charlson comorbidity index (CCI) in predicting ICU admission in patients with aortic aneurysm (AA). METHODS: The clinical data of patients were obtained from the Medical Information Mart for Intensive Care-IV database. The association between CCI and ICU admission was explored by restricted cubic spline (RCS), threshold effect analysis, generalized linear model, logistic regression, interaction, and mediation analyses. Its clinical value was evaluated by decision curve analysis (DCA), receiver operating characteristic curve (ROC), DeLong's test, and net reclassification index (NRI) analyses. RESULTS: The ICU admission was significantly associated with the thoracic AA (TAA), unruptured status, and surgery status. Therefore, 288 candidate patients with unruptured TAA who received surgery were enrolled in the further analysis. We found that CCI was independently associated with the ICU admission of candidates (P = 0.005). Further, their nonlinear relationship was observed (adjusted P = 0.008), and a significant turning point of 6 was identified. The CCI had a favorable performance in predicting ICU admission (area under curve = 0.728) and achieved a better clinical net benefit. New models based on CCI significantly improved the accuracy of prediction. Besides the importance of CCI in ICU admission, CCI also exerted important interaction effect (rather than mediating effects) on the association of other variables (such as age and blood variables) with ICU admission requirements (all P < 0.05). CONCLUSIONS: The CCI is an important predictor of ICU admission after surgery in patients with unruptured TAA.


Assuntos
Aneurisma da Aorta Torácica , Hospitalização , Humanos , Curva ROC , Comorbidade , Aneurisma da Aorta Torácica/epidemiologia , Aneurisma da Aorta Torácica/cirurgia , Unidades de Terapia Intensiva , Estudos Retrospectivos
16.
Microbiol Spectr ; 11(6): e0535522, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37855593

RESUMO

IMPORTANCE: Carbapenem-resistant Acinetobacter baumannii is a major global health concern due to its high prevalence and limited treatment options. Cefiderocol is the only novel Food and Drug Administration (FDA)-approved ß-lactam agent for the salvage treatment of carbapenem-resistant A. baumannii infection. Currently, a commercial automated susceptibility testing panel of cefiderocol is unavailable. Both the preparation of iron-depleted cation-adjusted Mueller-Hinton broth and the performance of broth microdilution are cumbersome in routine microbiology laboratories. A disk diffusion method is convenient for cefiderocol antimicrobial susceptibility testing, but limited data are available specifically for A. baumannii clinical isolates. Moreover, the Clinical and Laboratory Standards Institute published revisions to the A. baumannii cefiderocol disk diffusion breakpoints in 2022. Hence, we evaluated the performance of cefiderocol disk diffusion compared with the reference BMD against A. baumannii clinical isolates, especially those with cefiderocol zone diameters ≤ 14 mm.


Assuntos
Acinetobacter baumannii , Antibacterianos/farmacologia , Carbapenêmicos , Testes de Sensibilidade Microbiana
17.
Plants (Basel) ; 12(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37836245

RESUMO

Insights into flavor formation during fruit ripening can guide the development of breeding strategies that balance consumer and producer needs. Cherry tomatoes possess a distinctive taste, yet research on quality formation is limited. Here, metabolomic and transcriptomic analyses were conducted on different ripening stages. The results revealed differentially accumulated metabolites during fruit ripening, providing candidate metabolites related to flavor. Interestingly, several key flavor-related metabolites already reached a steady level at the mature green stage. Transcriptomic analysis revealed that the expression levels of the majority of genes tended to stabilize after the pink stage. Enrichment analysis demonstrated that changes in metabolic and biosynthetic pathways were evident throughout the entire process of fruit ripening. Compared to disease resistance and fruit color genes, genes related to flavor and firmness may have a broader impact on the accumulation of metabolites. Furthermore, we discovered the interconversion patterns between glutamic acid and glutamine, as well as the biosynthesis patterns of flavonoids. These findings contribute to our understanding of fruit quality formation mechanisms and support breeding programs aimed at improving fruit quality traits.

18.
Nanomaterials (Basel) ; 13(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686964

RESUMO

Herein, a series of novel long afterglow nanophosphors BaYAl3O7:Eu2+, Nd3+ was synthesized by the combustion method. The investigation encompassed the characterization of X-ray diffraction, morphology, chemical valence, elemental composition, and photoluminescence behavior of BaYAl3O7:Eu2+ and BaYAl3O7:Eu2+, Nd3+ nanoparticles. Under 365 nm excitation, BaYAl3O7:Eu2+ and BaYAl3O7:Eu2+, Nd3+ show emission bands centered at 497 nm and 492 nm, which are attributed to the 4f65d→4f7 transition of Eu2+ ions. The optimal samples of BaYAl3O7:0.03Eu2+ and BaYAl3O7:0.03Eu2+, 0.02Nd3+ have average fluorescence lifetimes of 850 ns and 1149 ns, respectively. The co-doping of Nd3+ ions as the trap centers produced long afterglow luminescence properties, and the afterglow time could reach up to 8 min. Furthermore, the fluorescent powder can be mixed with polyacrylic acid to prepare anti-counterfeiting inks; a clover pattern and snowflake pattern have been successfully printed using screen printing technology, proving its potential application in the field of anti-counterfeiting.

19.
Molecules ; 28(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37687241

RESUMO

Tin-based perovskites are promising for realizing lead-free perovskite solar cells; however, there remains a significant challenge to achieving high-performance tin-based perovskite solar cells. In particular, the device fill factor was much lower than that of other photovoltaic cells. Therefore, understanding how the fill factor was influenced by device physical mechanisms is meaningful. In this study, we reported a method to improve the device fill factor using a thin cesium iodide layer modification in tin-based perovskite cells. With the thin passivation layer, a high-quality perovskite film with larger crystals and lower charge carrier densities was obtained. As a result, the series resistance of devices was decreased; the shunt resistance of devices was increased; and the non-radiative recombination of devices was suppressed. Consequently, the fill factor, and the device efficiency and stability were greatly enhanced. The champion tin-based perovskite cells showed a fill factor of 63%, an efficiency of 6.1% and excellent stability. Our study reveals that, with a moderate thin layer modification strategy, the long-term stability of tin-based PSCs can be developed.

20.
Theor Appl Genet ; 136(10): 211, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737910

RESUMO

KEY MESSAGE: A major stable QTL for kernel number per spike was narrowed down to a 2.19-Mb region containing two potential candidate genes, and its effects on yield-related traits were characterized. Kernel number per spike (KNPS) in wheat is a key yield component. Dissection and characterization of major stable quantitative trait loci (QTLs) for KNPS would be of considerable value for the genetic improvement of yield potential using molecular breeding technology. We had previously reported a major stable QTL controlling KNPS, qKnps-4A. In the current study, primary fine-mapping analysis, based on the primary mapping population, located qKnps-4A to an interval of approximately 6.8-Mb from 649.0 to 655.8 Mb on chromosome 4A refering to 'Kenong 9204' genome. Further fine-mapping analysis based on a secondary mapping population narrowed qKnps-4A to an approximately 2.19-Mb interval from 653.72 to 655.91 Mb. Transcriptome sequencing, gene function annotation analysis and homologous gene related reports showed that TraesKN4A01HG38570 and TraesKN4A01HG38590 were most likely to be candidate genes of qKnps-4A. Phenotypic analysis based on paired near-isogenic lines in the target region showed that qKnps-4A increased KNPS mainly by increasing the number of central florets per spike. We also evaluated the effects of qKnps-4A on other yield-related traits. Moreover, we dissected the QTL cluster of qKnps-4A and qTkw-4A and proved that the phenotypic effects were probably due to close linkage of two or more genes rather than pleiotropic effects of a single gene. This study provides molecular marker resource for wheat molecular breeding designed to improve yield potential, and lay the foundation for gene functional analysis of qKnps-4A.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Embaralhamento de DNA , Anotação de Sequência Molecular , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...